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There given an n input , n output pl ant with a specified range of
2

~~ parameter uncertainty and specifi ed tolerances on the n system response to

command functions and the n2 response to di sturbance functions. It is shown

how Schauder ’s fixed point theorem may be used to generate a variety of

synthesis techniques , for a large class of such plants . The design guarantees

1._i_I the specifi cations are satisfied over the range of parameter uncertainty . An

L1_~ attractive property is that design execution is that of successive single-

C..3 loop designs , with no interaction between them and no iteration necessary.

Stability over the range of parameter uncertainty is automatically included .

By an additional use of Schauder ’s theorem, these same synthesis

techniques can be rigorously used for quantitative design in the same sense

as above , for n x n  uncerta in nonlinear plants , even nonl inear time-varyi ng

plants , in response to a finite number of inputs .
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QUANTITATIVE SYNTHESI S OF UNCERTAIN MULTIPLE

INPUT-OUTPUT FEEDBACK SYSTEMS

1. INTRODUCTION

There is great interest in multiple input-output (mb ) feedback systems,

for obvious reasons. A great deal of significant work (too numerous to list

but Wonham and Morse 1972, MacFarlane 1973, Wang and Davison 1973, Rosen brock

1974, Porter and D’Azzo 1978 are representative and include bibliographies ) has

been done , primarily in the realization and properties of the closed-loop input-

output relations , under the constraint of a feedback structure around the known ,

fixed mio “plant. ” There has been notable work done wi th uncertain inputs , but

again only with fixed , known plants . Of course, plant uncertainty is always

imp licit , if only because of the usual approximations required to obtain a linear

time-invariant (~ti) model .

In any case , there does not exist as yet any “quantitative synthesis ”

technique for the mio problem wi th si gnificant plant uncertainty , even for the

linear time-invariant case. By “quantitative synthesis ” is meant that there
- are given quantitative bounds on the plant uncertainty , and quantitative

tolerances on the acceptable closed-loop system response . The objective is

to find compensation functions which guarantee that the performance tolerances

are satisfi ed over the range of the plant uncertainty . In “quantitative

design ,” one guarantees that the amount of feedback designed into the system

i s suc h as to . obtain the desired tolerances , over the given uncertainty range.

In other designs , the amount of feedback may be more or less than necessary--

it is a matter of chance. The practical experienced designer may find the
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latter approach sufficient. However, a scientific theory of feedback should

certainly include quantitative design techniques .

In this paper it is shown how Schauder ’s fixed point theorem can be

used to generate a variety of precise quantitative mb synthesis techniques

suitable for various problem classes . An outstanding feature of each synthesis

procedure is that it consists of a succession of direct (no iterations

necessary) single-loop design steps. Furthermore , by a second use of

Schauder ’s theorem , the techniques are rigorously applicable to quantitative

synthesis of nonlinear uncertain mio feedback systems. This paper concentrates

on existence proofs but a 2 x 2 example is included .

1.1 Preliminary Statement of a Linear Time Invariant MIO Problem

In Fig. 1 , P = [~1~ (s)1 is a n x n matrix of the plant transfer functions

• in the form of rational functions , each with an excess e1~ 0 of poles over

zeros , and with a bounded number of poles. The p
~~
(s) are functions of q

physical parameters , with m an ordered real q-tuple sample of their values .

M = {m} is the class of all possible parameter combinations. The elements of

the n x n lti compensation rational transfer function matrices F = [f
~~

(sfl
~

G = (g1~(s)] are to be chosen practical (each w,th an excess of poles over

zero). They must ensure that in response to command i nputs the closed—loop

transfer function matrix T = [tuv(5)] (of c = Tr) in Fig. 1 where c, r are the

n x 1 matrices (vectors) of system outputs and inputs , respectively, satisfy

conditions of the form
Section ~

0 < A
~~
(w) � It~

(iw) I � B
~~
(w),V mcM (1) ~tion o

hiS I ~\ ‘ I~)N 
__________

BY _______

P~IR1B~fl~N/AYAI 1A8j[ ffy ~OD(S

ITI IT iI~
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If the t
~~
(s) have no poles or zeros in the right half-plane (are stable and

minimum-phase), then tuv(s) is completely determined by It~
(j’°)I, so (1 )

suffices (Bode 1945). It has been shown (Horowitz 1976) that time-domain

tolerances of the form

uv(t) d”c (t) u”(t)1 dt” 2

= 0, 1, .. ., n1 any finite number , can be satisfied by means of tolerances

l ike (1) on Ic(jw)I, where c(s) =Jc(t). The writer finds it much more

convenient to develop the synthesis theory in the frequency domain , and the

above proves its sufficiency for time-domain synthesis.

This presentation concentrates on the command response probl em, but the

same ideas can be used to handle the quantita tive disturbance response problem

under plant uncertainty , as will be shown in Sec . 6. The constraints on the

plant and the specifications are introduced as needed , in order to clarify the

reasons for their need.

2. DERIVATION OF SYNTHESIS TECHNIQUE

In Fig. 1 , there are available n2 loop transfer functions in L =

[1f~3
(s) ) = PG, and n2 f~ in F for satisfying the tolerances (1) on the n2

t~~. But in the expansion of I = [t~~(s)] = (I + LY 1LF, each tab (s ,m)

(mcfl) is a function of all the ~1~ (s~m) each uncertain, resul ting in very
compl icated expressions for tab and making direct quantitative synthesis

seemingly impossible--at least so far unsuccessful . The objective here is

to conver t eac h t (s ,m) design problem into an equivalent single-loop problemab
wi th uncertainty . This is done for each tabs by l umping all the other inter—

_ _ _ _ _
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acting t1~ variables into an ‘equivalent disturbance ’ , as follows .

In Fig. 1 , c = PG(Fr - c), so

(P~ + G)c = GFr. (2)

Hence, the followi ng restriction on P:

(P1): L~(s) 4 determinant P(s) ~ 0,YmcM.

Let r
~ 
/ 0 and r

~ 
0, i / V 1 so the resulting c

s
(s) = t

~~
(s) r

~
. Let

P~ = [P 1~ (s) I. (3)

The uth element of (2) is then

ru (s) (P~ + g~~)t1~ = 
~

‘ 

~~~~~

To simplify the presentation , we take 0 for u / i (although in practice

it may be useful not to do so). Then letting r~(s) = 1, the last equation can
be written as

1 ~~V 9uu~
’uv -

— uu uu~~- g - - tduv duy t4a

= 

~ ~
)
ui tiv

This corresponds precisely to the single-loop problem of Fig. 2, with

~uve 
= ‘

~uu Of course , the t~ , in duv of (4b) are not known but the bounds

( 1)  on ~~~ are know~1 generating a set ~~ = {d
~~
}. We define the extreme 

~~

j d Ye ’ 
sup~ IP~iIIB 1v I~ B1~ 

of (1) (5)

_ _ _ _ _ _ _ _ _  -~~~~~~~~~~--- — —-‘~~. , .- ~~ • -- -~~~~~~
•- • 

~~~~~.
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Suppose we can find guu(s) and such that in the notation of (4 ,5)

0 I•tuv l ± ITduv ll d ve k ~~~~ B 1,V m€:M . (6)

Then the magnitude of the right side of (4a) £ [A
~~
, Buy ] for all mcM and for

all possible combinations of t1, ( i  / u) which satisfy (1). Suppose this is so

V u,v combinations , and the other Schauder condi tions of Sec. 2.1 are

sa tisfied. Then Schauder ’s fixed point theorem can be used to prove that
these same n g~~ and fl

2 f~,,, are a solution to the synthesis probl em (1).

2.1 Application of Schauder ’s Fixed Point Theorem

This theorem states that a continuous mapping of a convex , compact set of

a Banach space into itself , has a fixed point (Kantorovich and Akilov 1964).

We define the Banach space to be the n2 C[0,co] product space denoted here by

w i t h  norm = ~ individual sup norms . C[O ,o~] is the Banac h space of real

continuous functions f(w), uc[O ,co3 with H f II = sup If (w)I. The convex compact

set in each of the n2 C[O,co] is taken as the acceptable set of lt~
(iw) I satis-

fying (1), denoted by l
~
he(LL))} 

= 
~~~ 

Additiona l constraints have to be assigned

to the he (w) in order that each Huv set is compact and convex in C[O,°°]. These

constraints have been justified in detail in (Horowitz 1975) and are therefore

only summarized here. If each set is convex and compact in C[O,~], their n
2

product set denoted by H(n2) is convex and compact in C(n2).

Constraints .on ~~ = {h(w)} uv
1.3 continuous functions A

~~
(w), Buv(~) with properties of (1) as

bounds on h (u )
2. h’(~) is uniformly bounded: ~ 

) )h’(w )~ <K , Y ~~ 

-
~~~~~~~~~--.~~~~~ 

-.
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3. h(w)-’o as ~~÷~° in the form k/t~~, e a fixed finite number ~3 to allow

at least one excess of pole over zeros for the elements of F,G ,P in Fig. 1.

These constraints guarantee (Horowitz 1975) that h(w) can be taken as the magni-

tude of a function h(s)
3~ 

which has no zeros or poles in the interior of

the right half—plane or on the j w axis. Arg h(jw) is obtained from h(~ )

by anyone of a number of Bode integrals (Bode 1945).

An element of H(n2) consists of n2 positive functions on [O ,oo], h .k (w).

Using any appropriate Bode integral , find the associated phase functi on denoted

here by arg [hlk (~
)], giving the minimum-phase stable function hik (s).

hj k (jw ) = hik (w) + j arg[h
~k
(w)]. For future use , denote this sequence of

operations whereby h(~) is transformed into h(jw), as the “Bode transformation ”

B(h(w)). Define 0 on H (n2) by

= ... ,~~): 11(n2) -* 11(n2), *uy(h1i~h
~2~ 

..., h~~)

= 

~~~~~~~~~ 
i~u 

Pui B(hiv (w))

+ uu)

using for ~~~ any specific fixed mcM . (Note the similarity of (7) to (4a,bfl.

In Appendi x 2, it is shown that 9uu’ ~uv can be found such that ~ maps

H(n2) into itself. It is also necessary to prove 0 is continuous , as follows.

c~ is .1 continuous mapping

‘~ is continuous If each of its n2 components is continuous . The first step

in each mapping Is B(h 1~
(w))= h1~ (iw). In (Horowitz 1975 , Sec . III) it Is proven

that the step h1~ (w)+ arg h1~
(w ) AO j~

(w) is continuous in the C[O,co) norm. Hence,
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the mappings h1~ (oi)± h1~(w) ~~~~~~~~~~~~~~ 
hj~

(u))-3. h1~(w) sin O. (w)

~
X1~
(
~
) are continuous. The denominator of (7) is a constant on H(n2),  and

so are 
~~ and the in the numerator. Thus , the numerator has the form

Num. = (K a + iKb - E(C1 + iD~
)(2I((

~
3) + j X 1(~ )), j =

all other terms real and only theJ
~~

, X.~ mappings on H (n
2). Infintesimal changes

in6~1, X.~ clearly result in similar change in Num. , so Num . is continuous on

H(n2) and so is each of (7) and hence 0. The conditions in Schauder ’s theorem
are satis9ed , soo has a fixed point.

This means ~. a set of h1~ (w ) denoted by h~~(w )~ ?

~ 
P~~h~~(jw)

h* ((0) = 
1/u (8)uv 

P (1uu

u,v = 1, ...~~~ n, where h~~(j) = B(h
~~
(o)).

We would now like to deduce from (8), that

* * 
- 
.~~~ 

P~~h~~(jw )
B(h

~~
(w)) = huv (iw) = 

1/u 
g (9 2 )

P C i  +
uu

For , if (9) is true , then by letting h~~(jo) = t
~~
(jw), we have recovered (4)

and the n 2 h
~~

(jw ) are a solution to the mb probl em for that specific mEM.

The solution is unique if every building bloc k in the mio sys tem has a unique

output for any given input , which is a very reasonable condition . This makes

_ _ _  _ _ _  
___________________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•.
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i t  unnecessary to prove that there are no transitions from (8) to an

expression similar to (9) but with right half plane poles and/or zeros. Since

m is any elemeni. of M, this is true for all mEM (of course wi th a different

set of for each in).

The step from (8) to (9) is a crucial one and must be justified with great

care. Given an analytic function 4(s), there is an infinitude of if(s) such

that k(i )I = I~(ji$I, (0 c[O,o’J, e.g.

(1 — t 1s) (1 + T
2

S)

~(s) = •(s) (1 + T
1

S) -(-1 - T
2

S)

But ~~s) / ~p(s) even though l~(jw)I ~(i fl. But suppose we know from other

sources that •1 (s) has no right half plane zeros or poles, then given

• I~1 (iw) I M(w) a magnitude function which is Bode transformable , wc can

conclude that 4 1
( jw)  B(M(o)) M(jw). Hence, to justify (9) we must prove

that the expression inside the vertical bars in (8) has no right half-plane

zeros or poles. The pole part is easy, because 1 + 
~~~~~ 

is obviously

designed to have no right half-plane zeros; certainly 9uu’ f~ won ’t be

assigned any such poles; h1~ (s) doesn ’t have any by definition , and is not

allowed any such poles--see Sec. 3.1. To prove the zero part, note that from

(6) and Rouche ’s theorem, the number of zeros of the right side of (9) in the

right half-plane , equals such number of

~uu~uv
g ‘

Puu (l + ~ M)

__________ ~~
. •~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

9

which is easily made zero in the single -loop synthesis steps (if 
~~ 

has no

right ha l f—plane poles , a condition necessary for other reasons--see Sec. 3.1).

Thus , the expression inside the bars in (8) has no right half-plane poles or
zeros , justifying (9). This is a very valuable result. The problem of

stabilizing a highly uncertain n x n mio system is automatically disposed of in

the synthesis procedure , which is furthermore one of designing n single-loop

transmission functions.

It is worth noting that even , if the above proof was not available, it

would not be disastrous for this synthe;is theory. It would only be necessary

to gua rantee that at one mcM , the system is stable and minimum -phase. For

then , this would be soVmcM , because by the Continuity of the poles (and zeros)

with respect to the parameters , the right side of (8) would have to be infinite

(zero) at some w , in order that for some m~M the system should be unstable

(or have a right half-plane zero). However, the synthesis procedure by

definit ion precludes this. And it is a relatively easy matter to guarantee

the desired condit~ions at one ni~M. .. . .

3. CONSTRAINTS ON MIO PLANT

The above results hinge on our ability (a) to find 9uu and 
~uv to satisfy

(6)~
’w, all u,v pairs and all m€J’~, (b) that each equivalent single-loop design

is stable and minimum -phase V mcf~: These lead to constraints on the mb plant ,

obtained by applying single-loop design theory to achieve (a,b). Appendix 1.

gives an existence theorem for single- loop design . The first part of the design

(see Appendix A3) gives bounds on the nominal loop transmission which Is

~uu~~uuo of (4a ), where 
~uuo is the ‘nominal ’ associated with a nominal m0cfl.

I. •‘• . • —•

_ _ _ _ __ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . - ,- .-~~
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These bounds must be satisfi ed in order that a specific system transfer

function t~, satisfy (1). Here ~~~~~~ is used for n t~ , (v = 1,... ,n )

• functions. It is proven in A3, that a g~~/P~~0 can be found which satisfi es
• the conditions for all n ~~ functions .

For exampl e, consider t~1 at ~ = and suppose A
~i (w i ) = .9 , B~1(w~) =

1.1 in (1). We could split thi s range [.9, 1.1] into say [.95, 1.05] for

and .05 for Tdu’1dul in (4), using duie of (5) for dvi. The technique in A3

or better (Horowitz and Sidi 1972), is then used to find a bound on g~~(jw 1
).

Here, we note a tough constraint. Sooner or later in to , Ig~ (iw) I must become

very small with 1 + ~~~~~~ -‘ 1 and then in (4a)

t 
- duv (‘10)

~uu

and in (7), 
~~ 

-
~ the numerator of its riqht side divided by ?uu Now (4a, 5, 6)

in general require that

It > 21T d (iiuv max duv uve

But Ituv i max 
= 
~~ 

and at hi gh frequencies

5UPç in iic ~M . ‘ ‘~ui~~ iv
1~~U

I~ duv~
1uve ! I;.,I

To see what this leads to take, for example , n = 2 so that the above applied

to v = 1, u 1,2 gives

2~?12~B21 21?2l IB l lB11 > B.,~ > 
~~~I lii ‘‘ I~~~ I
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requiring

4(P12P211 >  
~ P ~ 

as to - ÷ c’ (12)I 11 22’

Thus, a constraint on ? is

(P2a): 3 (0~~~ ? for w > toh’ ~P P j  > 4 1P 1
P21~ Vfl1cM. (13)

It is known that as s ~

k.
- 

1J
1J ~~~S

so the above becomes

e11 4-e22 e12+e21
(0

. 
(0

If the uncertainties in the k1~ are independen t and e 11 + e22 e12 + e21,

this becomes

kllmink22m i > 4ki 2 a k2 i a • (14)

There is an important problem class for which the inequality is less

harsh. This is the “basically noninteractina ” class, where one ideally desires

~~ 0 for i / j, but because of uncertainty accepts ~~ = 0, It~~I ~
for i / j, in  (1). Also , one doesn ’t care if t~~(i / j )  is nonminimun-phase.

Condition (6) then applies only to u = v. The f~~ (u � v) are set equal to

zero and (13) becomes

t0h’ ~~~~ 1P 11P22 1 > 21P 12P21 mcM, w > (15)

I
—•—

~

——--— •— ••
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It is desirabl e to ease inequality (13) in the genera l case. Note that (6)

can be satisfied over any finite w range by making Ii + g /2 I large enough.uu uu
Thus , as previously indicated , one can split the [A UV ,BUV I tolerance so that

IT I > IT duv ll d uve l ,V mCM, e.g. assign It uv i ~~ 
[E - r, E + ci wi thuv

E = (A + B )/2, 2c < B - A and the balance (Buy - Auv - 2c)/2 is assigned touv uv uv uv
Tduvduv of (4a). But Il + 

~~
f P I  must then be made large enough to satisfy

the resulting requirements , and it can for any finite to range. The trouble is

that g must be allowed to ÷ zero as w 9- w, l eading to (13), etc., if weuu
insist on (6). We could ignore (6) at large , say for > with as

large as desired but finite , letting 
~~ 

<< It duv Hduve I for o > Then

for > to~~ (11) is replaced by the weaker

It ima x > lT d d I  (16)

and for n = 2, (13) is then replaced by

(P2b ’: 3 
~
0h’ ~ for > w I1~ 

IP 11~22 I > 1p 12
p

21 I,V mcM 
I 

(l7a )

-An important question is whether (17a) is an inherent basic constraint in the

presence of uncertainty , no matter what design technique is used , or is due

only to this specifi c design technique . The methods suggested in (Rosenbrock

1974, Owens 1978) to achieve diagonal dominance , may be hel pful in satisfying

(l7a),but they would have to be extended to uncertain plants . Note that in

Rosenbrock 1974, Owens 1978), diagonal dominance is desired ~ w c [0,o~),

whereas in 
~~~ 

it is requi red only for w >

For the analog of (l7a) at n = 3, it is found that diagonal row dominance

of P~ for to > to11, is a sufficient condition. The necessary condition can be

wri tten as

______ — . ~~~~~~

~ . ‘..•
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)for t o >  w11 IP~~P~~I > IP~~P~~I and

> (IP 12P~~I + IP 13P22 I)(I~22~31 I + IP 21~32 I) (17b )

which can be wri tten as,

I~11~22~33 I > 1P 11P23P32 1 + I~12~21P33 I + IP 12~23P31 I

+ 1P 13P22P31 1 + IP 13P21P32 1 for to > to~ . ( 17c)

The latter has the following intepretation. Array the matrix P ’1 in the usual

manner , but twice -one under the other as in Fig. 3a. Then the terms on the

right side of (17c) consist of the products of the entri es crossed by the

dashed lines .

However , if is so used , it is no longer possible to use Rouche ’s

theorem and thereby prove each t~ is minimum-phase. But we can still design

so that the nomi nal t 1~ are minimum-phase and we know from (6) that t
~~

(iw ) / 0

for wcfO ,w 11]. Therefore, from the continuity of the zeros of t~ with respect

to the parameters of the syst~m , if t~ has any right half-plane zeros, they

must enter the right half-plane as shown in Fig. 3b. It is unlikely that such

a zero which must migrate all the way up to jw11, should move back into the - I
significant control bandwi th region A. The point is that if right half-plane

zeros are “far-off” , they have little effect and the system is “dominantly”

minimum-phase. : •

- ‘- .. .- • •
~~
-,
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Rouche ’s theorem can stil l be used if we can guarantee that (6) is
satisfied for a semicircl e consisting of the segment [-jw 11~iw~} and the right

half-plane half-ci rcumfe rence of the circle of radius centered at the

origin. Then , there are definitely no right half-plane zeros of t~ in this

half—ci rcl e, and the system is “dominantly ” minimum-phase This is quite
practi cal in the design technique of (Horowitz and Sidi 1972), discussed in A3.

3.1 Modi fi cation of mapping 0 
-

Note that for the “dominantly minimum -phase ” and the “basically noninter—

acting ” cases, the application of Schauder ’s theorem in (2.1), Eqs. (7-9), etc.,

needs modification , because nonminimum-phase tuv(~
to) cannot be uniquely

derived from Ituv (jw)l• Redefine h c Huv of 2.1 to consist of an ordered

pair: h(w) as before and q(w), the imaginary part of h~~(~to) with

h = lh~~
(ito)I ; h c 

~~ 
the same as before but q(w) c C [O ,oo) with

0 < Iq(w) I < h(w). Constraints 2,3 in 2.1 on h(w) also apply to q(w). Let

(HQ)uv C C2 [O,oo) denote the set {(h(to), q(to))} wi th I~~h ,q)II = li h Il + li q il .

Obviously, 
~~~~~ 

is compact and convex in C2 [O,co) . The extension to the

,~,2 product set is straightfo rward.

The mappings 
~t’uv in (7) are redefi ned. Each is a pair of mappings ,

one the absolute val ue as before, the second the imaginary part wi th the

absolute bars on the right removed. On the right side of (7), B(hiv (w)) is

replaced by r
~~

(to) + iq1~ (w)~ with 
~~ 

= ~~ + q~~, (h iv~ 
q1~

) c (HQ)~~.

It is necessary to prove that 0 maps each element of ~
HQ)uv into itself.

..

~

— - .-- . .
~~~~~~~~~~~~~ • -~~~~~~~~~~ . — - - — -. - — • - - -~~~~~~~ . • . •~~~. -- •-— -~~-~~~~~~~~~~
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The proof follows immediately from that for the minimum -phase case -- this

is obvious from (6), the definition of duve in (s) , and Appendic es 1 ,2. The

proof that 0 is continuous is straightforward . Accordingly, the Schauder

conditions are satisfied and there exists a fixed point which satisfi es the

speci fications. Such specifications , by themselves , would not be good ones

because they permi t highly nonminimum-phase t
~~
(s). However, they are

satisfactory if it is know n from other sources that ~~ is “domi nantly

minimum -phase ”.

3.2 Addi tional Constraints on P

Constraints Al(l)- (3) in the Appendix , must be applied to the l I P
~~

,

since in Fig. (2) 
~
3uve = = p of Appendix. A 1 .l requires that there be

no change in the excess of poles o ver zeros of p— = r— where ~ = det. ~‘

uu uu
and its uuth minor , as m ranges over jj. Also , that for at least one

mcfl, denoted by muo~ ~~~~ 
has all its poles and zeros in the interior of the

left half-plane. The inuo can be different for each u.

Al.2 requires that 11
~uu is minimum-phase Y mcjj, and its zeros do not

get a r b i t r a r i l y  close to the ito axis. Since 11
~uu = 

~h’Auu 1 this means ~ must

have no right half-plane zeros. Hence the in general have no rig ht

half-plane poles. (For those who wish it , P is restricted to be control lable

and observable Vmc~, but these concepts are unnecessary if P i s properly

formulated in terms of physical uncertain parameters (Horowitz and Shaked

1975)). Since the p1,~ In P 
= [p.~ ] are finite rational functions , the latter

part of Al.2 is automatically satisfied.

• - •

L - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—- - — — — •
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Al .3 for n = 2 is the same as (17), which shows that (‘17) is a

fundamental condition for linear time-invariant design , not an “extra”

condition due to our design technique, at least for n = 2. However, (13)

is an “extra” condition . Note, the extension of single-loop design to

disappearing poles and zeros in A6 may perhaps permit disappearing poles

and zeros in  the mb plant functions.

4. OTHER DESIGN EQUATIONS

The previous design equations constitute only one of many

design techniques derivable from Schauder’s fixed point theorem. Only

two more will be briefly mentioned here.

Both are based on the use of a nominal diagonal loop trans—

mission matrix. The design obligations on the loop transmission

elements are then independent of the way the plant input and output

terminals are numbered. If G is mcide diagonal , such numbering is

important and after one arbitrarily numbers the plant input terminals,

he should try to number the outputs such that the main effect of in-

put i is on output i. Manipulation of (2) somewhat differently from

Sec . 2, gives

~u~n~ u + i~l 
v1.t.1/ S 11

ti l  
- 1 + & /~11 11 (18)

t~1 
= 

f21Z22 /c522 + i/2 ~~~~~~~~ 
etc.

22 22
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where V = [v 1~
] = I—%(2Y~

1 , P0 is the 
‘nomi nal’ plant matrix and there—

fore fi xed, P is the general uncertain plant matrix , 6.,~ 1 - v~~.

The are the nomi nal elements of the loop transmission matrix L.

Eqs. (18) lend themselves to single-loop design and us~ of Schauder ’s

theorem, pricely as did (4).

Another interesting set of design equations is obtained by de-

signing to control the changes in t1
3
, rather than t~ directly. Let

T0 
= [t..] be the ‘nomi nal ’ system transfer matrix and I = [t

~~
] the

actual which is uncertain, ~T =[~t.3
) = I - T~. Then tt can be shown

that

= (I+L )~ VT, V = I-E~P~ (19)

wheré,e , P are likewise the ‘nominal ’ and uncertain plant transfer

matrices, and L ~0G 
= is the nomi nal loop transmission matrix.

If I is taken diagona l , the resul t is (n = 2 for simplicity )

— 

v11t11 + v12t21 v11t12 + v12t22
— .

~ + ~ 
‘ = .

~ + ~ 
(20)

and similar obvious ones for t~t21, ~~~~

The design problem is now completely one of disturbance

attenuation , with the disturbances d11 = v11t11 + v 12t21, etc. , whose

range is known. Schauder ’s theorem is appl icabl e in the same manner

as before. Note that V represents the ‘normal i zed’ plant variation

matrix. Eqs. (20) appear to be much simpler to use for design (once
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the t~t.. tolerances are formulated) than (4), and their use needs to

be in tensively researched. However, both for (18) anSi (20) the con-

straints considered in 3., leading to (11-15) must be found , and

these may possibly be tougher than before. Al so, both a nominal ~
and T must be chosen~which i s not good~because the optimum pairi ng

is not apriori known. However , the analogs of (14,17) may be more lenient.

4.1 Bandwidth Minimi zation

An important criterion for comparison of design techniques is

their “cost of feedback,” which we take as the bandwidths of the

ioop transmission functions--because they determine the system

sensitivity to sensor noise . Obviously , quanti tative synthesis

techniques must first be invented before one can turn to their op-

timization (for wi thout such qpanti tative techniques comparison is

possible at best, by analysis after a specific numerical design has

been made). This approach via Schauder ’s theorem promises to generate

a variety of such techniques , and the next step will be optimi zation.

5. DESIGN EXAMPLE

The 2 x 2 plant elements are p1~ 
= k1~/(1+sA1~ ) wi th correlated

uncertainti es , giving a total of 9 parameter sets in Tabl e 1. The

design was performed to handle the corwex combi nation generated by

these 9 sets (Figure 6).

— - -4
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TABLE 1

No. k11 k12 k21 A
11 A~~ A~~

1. 1 2 .5 1 1. 2 2 3
2. ‘1 2 .5 ‘1 .5 1 ‘1 2
3. ‘1 2 .5 ‘1 .2 .4 .5 1
4. 4 5 1 2 1. 2 2 3
5. 4 5 1 2 .5 1 1 2
6. 4 5 1 2 .2 .4 .5 1
7. 10 8 2 4 1. 2 2 2
8. 10 8 2 4 .5 1 1 2
9. ‘10 8 2 4 .2 .4 .5 1

A “basically noninteracti ng” system is desired , with the off-diagonal

transmissions specified in the to-domain It12(jco)I, It21(iw)I <O.l Yto. The

diagonal t11, t22 bounds are identi cal and were originally in the time—

domain in the form of tolerances on the unit step response shown in

Fig. 4a, b (which also shows the design results for those of the 9 cases

which were reasonably disti nguishable). These time-domain bounds

were translated into the “equivalent” bounds on It 1~(iw)I shown in

Fig. 5 (Horowitz and Sidi 1972, Krishnan and Cruickshank 1977).

Familiari ty wi th quanti tative single-loop design is assumed

here . One can do a problem of this complexity by hand. The

sets {Pjje(Jw))~ 
called the plant templates, are obtai ned on the

Nichols chart. Some of these templates of = .A.,f)22 =

‘11

•• -- - . - - -

~~~~~

- .-• - — 

• - -- - - • .  -•--— . 
~~~~~~~~~~~~~~~~~~~,., ~~~~~~~~~~~ ‘ •

- -

• — • --
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are shown in Fig. 6 at various to values . The larger the template,

the greater uncertainty at that to value. The tolerances on ~~ of

(4a) and Fig. 5 were divided between T and T duu d as discussed in

Sec. 2. Each of these, in conjunction wi th the templates, leads to
9

bounds on the nominal loop transmission = 
UU Some of these
uuo

boulds on £~~~, due to t11, are shown as solid lines in Fig. 7, i.e.,

it is necessary for 2.ii~ 
to lie above the indi cated boundary. The

tolerances on Tduuduu lead to the dashed l ine bounds on £
110• No

attempt was made to optimize the division of the tolerances between

and Tdll dll . The composite bound °~ tiio must satisfy both.

The 2.11 (jto) chosen is also shown in Fig. 7. There was no attempt

made to optimize the 2’jjo
~ 

the design was made by hand quickly, so

the 
2.110

(jw) are larger than need be, wi th the tolerances therefore

satisfied better than necessary--as seen in Figs. 4a, b. Optimal

would lie on their boundariesat each to , so in this

exampl e there is considerable overdesign.

Here we took

— ~o — 
10 (1+.007s)

— 

P22o ~~ 
— 

~~ 
(1+.025s)1l+s + s 2

400 (400)2

• .• ~~~
. . -

- -4
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wi th

____ — 
.75 (l+3.66s) 

.

~22o 
— 

(l-’-s)(l+3s)

= ~o 
- 

9 (l+ .OZs)
22o 

~llo 
g

22 
— 

~ (l+.ls) Fi+ _~ + ~2
L 150 (l5O ) 2J

with

____ — 1.5 (l+3.66s)— (l+3s)(1+2s )

The requirements on f11, f22 (f12 
= f21 

= g12 
= g21 

= 0 here) were

found using single-loop design technique [15) as briefly explained

here in A4, and

f — I 
- 

I
l 1 l + .5s ’

were found satisfactory. The system was simulated on the digital corn-

puter wi th the results shown in Figs . 4a, b. The t1~, t21 tolerances

were easily satisfied by the design.

While this is not a very challenging example of the design techni-

que, nevertheless the uncertainty is very large and one should consider

how quick , sim?l e and straightforward was the design procedure , and

also consider what alternatives are offered in the mb literature.

There are no other techniques available for systematic design to

specifications in the presence of significant uncertainty , which

guarantee design convergence and attainment of design tolerances.
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Whatever present popular technique is used, it would be necessary

to cut and try and endeavor to understand the relations between the

cutting and the results as one continued to cut and try, because

these techniques have no provision for significant uncertainty . In

the above design , one sweep was known to be sufficient because the

plant and the design tolerances (to-domain) satisfied constraints ,

P1 etc.

5. EXTENSION TO NONLINEAR UNCERTAIN MIO PLANTS

Once there is a quantitative design technique for linear time

invariant mio uncertain plants , i t  appears at least conceptually

possible to extend it to a significant class of nonlinear, even

nonlinear time—varying, uncertain mio plants . The procedure is a

general ization of that used (based also on Schauder’s theorem s

in (Horowitz 1976) for single loop uncertain nonlinear systems.

The key feature is the replacement of the nonlinear pl ant matrix

set (a set because of the uncertainty), by a linear time invariant

plant set which is precisely equival ent to the original nonlinear

set, with respect to the acceptable system output set. The pro-

cedure Is briefly presented for the case where one wants the system

with nonlinear uncertain plant to behave like a linear time-invariant

system for a specified class of command input sets.
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It is essential that the command input sets represent a good

sampling of how the system wi ll actually be used. For example, suppose

n = 3 and in actual use r1, r2 always exist simultaneously (with

r3 0), and r3 appears by itself (wi th r1 
= r2 = 0). Say there are

ten typical r1(t) inputs and for each typical r1(t) there are five

typical r2(t). This makes a subtotal of 50 input sets , to which is

added the number of typical r3(t) say 10, giving a class R = C~-} of

60 sets, of which 50 have the form ~ = (r1, r2 , 0) and ~ (0 , 0, r3)

for the bal ance. Choose i~1 cR. The family of acceptable outputs for

this input, is known from the tolerances on t1~ , giving for that one

input vector a familyW th}, F~ = (h 1, h2, h3). The mio plant is re-

presented by a fami ly (because of parameter uncertainty ) W of nonlinear

di fferential mappings

&7= {w) , W = (w 1,w2,w3)~c1 w1(x 2,x2,x 3,m), . . . , c3 =

w3(x1,x2,x3,m), where the x2 are the plant inputs~c. the plant outputs ,

and m is the plant parameter vector mc~I.

Take a sample acceptable outputtrip le h = (h1, h2, h3) and find

the corresponding plant inputs at some specific m~M (or in other words,

pick a W €W) and let c,~ = h~ and solve the nonlinear equations backwards ,

giving the input set (x1, x2, x3). Take the Lapl ace transforms

of ~~1, ~~(s) of h. giving the vectors ~[s] = (~1(s), ~2 (s) , ~3( s ) )

liEs] = (R1
(s) , . . . , fi

3(s)). Repeat for other i~ samples in the

acceptable output set H, giving two paired families of ~(sl, ~~(s].

- 

- -
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Select any combination of three x[sl , forming a 3 x 3 matrix ~ and
A

corresponding pai red combination of three R[s], forming the matrix H.
. p.r. ~ ‘ — l . . .Set H = PX and solve for P = H(X) . P is the linear -time-invariant

equivalent of the specific W~CU picked , with respect to the specific

trio of acceptable output vectors picked. Repeat over different

trios. Repeat the entire operation over di fferent wa’, giving a

class P
1 

= {P} which is the linear-time—invariant equivalent of the

(U family, with respect to the class of acceptable outputs H for in-

put vector 
~~ 

Repeat the entire operation for 
~2’ 

. , r
6~ giving

~tota1 
which is the linear time equival ent for the nonlinear

(U, with respect to the tribe of 60 families of acceptable output sets.

The equivalence is exact if the conditions for application of

Schauder ’s theorem are satisfied. We now have a linear time—invariant

uncertain mio problem, which let us presume we can solve. If and only

if we can guarantee the solution of the latter, then the same compen-

sation functions will work for the original nonlinear uncertain mio

plant. Hence the importance of quanti tative linear time invariant

design techniques (over and above thei r intrinsic -m~ortance).---for they

enable the precise solution of nonlinear uncertainty problems.

The design effort in the above appears to be enormous but it is

conceptually straightforwa rd and easy. An ordinary control engineer

can implement it and the digital computer is, of course, an essential
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tool. Conceptually too, it appears possible to extend the method to

obtain nonlinear relations between inputs and outputs wi thin specified

bounds , despite large plant uncertainty , even nonlinear time-varying ,

as can be done for the single input-output case. -
~ The prospect

is fascinati ng. Imagine being able to work with the actua l nonli near

equations of a jet engine , or a chemical process , etc., include un-

certainties in the modelling , even uncertainty in system order (see

Appendix ), and designing to achieve outputs within specified tolerances

over the given range of uncertainty .

6. DISTURBANCE ATTENUATION

Let x in Fig. 1 be a nxl matrix of distrubances. The resulting

system output (with r = 0) is c = (I+PGY ~ Px Zx, Z = [z~91~ the n x n

disturbance response matrix. Bounds on Z are given in the form

~
z
~~

(jto)I < b~~(to) , Y mcfl (21)

Rewri te c = Zx in the form (P~ 
1 L G)c = x. Let x1 ~ 0 only for i 

= v , so

c.~ = 
~~~~ 

and

U 0, u ~~ (P
~1 +g

~1 )z
~~ 

6v = 

~~~ u = v 1
i=l

~~~~~~~~~~ 
= — 

~~

i ~u

V 10 
~~

n— 
~ - “ui ~ui’ iv

= 
1sU (22)

+ ~~~ 
)

uu 
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• Let
P . + g  -

X uve (to) ~ sup 
~ 

Ui~ Ul Ibi (to) (23)
m i/u

The g~~(to) (i/u) can be chosen to minimize xuve (to)~ 
but for simplicity we shall

assume them zero. From (22,23)

+x-v ~u uve 1 (24)
( 1+~~1!~)

If ‘1/PUU satisfies the constraints listed , then it is obviously possible

to guarantee 
~
z
~~

(to)( < any finite number , no matter how small , at any finite

+ 
to. Also it can be made zero at a finite number of to values by assigning poles

to g
~~ 

at these values . Assume that 
~~ 

can be chosen to satisfy (21)

V to c [O ,co). Then one can set up the condi tions for Schauder ’s theorem,

precisely as was done in 2.1. The set buv (to) must have been formulated such

that B(n2), the n2 product set of the buv(w)~ 
is compact convex in

analogous to H(n2) in 2.1. The analog of c
~ in (7) mus t be formulated

with the iiiodifi cation of Sec. 3.1, inasmuch as we do not care if the zuv(s) are

nonmi ni mum-phase.

Conditions analogous to (12-17) for n = 2, are obtai ned as follows.

As to -+ ~~, g
~u
/P
~~ 

+ 0 so in (24), the right side its numerator. But

Iz~~
(ito)J < b~~(w) of (21). Let u = 1, v = 2 and then u = 2, v = 1 and

obtain the necessary condi tion (for g12 = g21 = 0),

As to + , p12 p21 < p11p22 , V mc~ (25)

_ _  ±:~~ 

+

~~~~~~~~~

- 

- - +-- -. +. .~~~- -
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similar to (17) but here only at ~~, because there is no concern with the

minimum -phase property. Setting u = v = 1 , and then u = v = 2 in (24), we

get the conditions

As to ~~, b11 > = IP~ 
- 

12 21
1 b22 > 

~
p
~2 

- 
2l~ (26)

But in reality as to -÷ °, c -+ Px so Z -‘- P and z11 p11 , z22 + p22. Hence,

assignment of b11 (as to co) to satisfy (25) is no obstacle , because the b
~~
(w)

are upper bounds on the

+ 
,. . * +- • ..+ •‘ ...- 

rn-•~~~~~~~~~- — - -~~~~~~—-+
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APPENDIX 1

EXISTENCE THEOREM FOR SINGLE-LOOP DESIGN

The plant transfer function p(s) is uncertain, belonging to a

set P = {p(s)} and is imbedded in a two-degree-of-freedom sing le-

loop feedback structure, as in Fig. 2 (p in place of 
~uve~ 

The

rational functions f(s), g(s) (replacing 
~uv ’ 

g
~•~ in Fig. 2) are

to be chosen to satisfy specified tolerances on the command fre-

quency—response t(jw) = and disturbance frequency response

tdC]w) 
= c(jto)/d(jto), (r, d, c replacing rv , ~~~~ 

C ~ Fig. 2).

Al. Constrai nts on P

1+. p(s) is a rational function wi th a fixed excess e~l of

poles over zeros (this is relaxed later in A6, 7). ~ at least one

pcP one of which is designated as 
~~~~~~~ 

all of whose poles and zeros

are in the interior of the left half-plane.

2. At each to€(O,oo), 3 inf. Ip( jw){ ~ b(to)>0. 3 inf b(w)

~ b1>O for ~ny finite interval I = (O,w] . Also , Ic~ I of A 1(1) has

a sup on each fini te interval 1 = LO,wl , sup 1p01 = x01.

3. As s-’~ , ~~~~~~~ k€[1c 1, k2] with 
co> k2>k1>O, uniformly

on p -in the following sense: For any c>0, no matter how small, 3

(independent of p(s)), such that for each pcP there Is associated a

k~c[k1~ k2] so that

anj and Arg Ip(j to)+e~j <c , for 
~ > ‘4’
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Note that Al(l) permits changes in plan t order, e.g.,

with say c~ c [2, 5), T1
C [0, 3]. Al(2) dictates minim um—phase p (s)

and that the j w axis is not a limi t of any sequence of p(s) zeros.

A1(3) requires a uniform bound on the poles and zeros of all pEP.

A2. Tolerances on I t ( iw fl and ItA (jw)I 
+

(1) O<A(w) ~~t( j to )f~ B(to) with A , B c C [0, c o) ,

~ inf ~(to) = ~~~ on any finite I [0,to].
I 

Ak
(2) ~ A > 1.05, j for ~~~ ~~~~~ This means that

in the high to range, the feedback is allowed to increase the sensitivity

s = ~t(Jw)/t(jw) rather than decrease it. In fact, as noted by
~p (j ~) / p ( j  to)

Bode , fln ISJdto = 0 in any practical system , so the decrease

in S(JSJ<l ) achieved in the control bandwidth range, must be balanced

by SI>1 in another range. A can be a large number, because as w-’~,

t(jto)-+O, e.g., suppose k2/k1 
= 10, who cares if (t(jto)j c [lO~~~, lO~~]

(x = lOs) at very large to.

(3) The tolerances on tdCJ(o) are In the form Itd(Jw)kQ(w)>O.

For any I = [0, to], ~ inf Q(w) BdI. Since td 
= P(1 + pg)~~ =

pS of A2 (2), I Q/p~>l at high frequencies, so ~ 
tod~ 

? for

Q(to) = 81 (w) J p (jtol , 
~l

>1 05.

A 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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(4) Both t (s)  and td (s)  must be stable. I.e., wi th poles re- +

stricted to the interior of the left half-plane VpeP, and minimum -

phase.

A3. Choice of Compensation Functions

Let p0(s) of Al(1) be the ‘nomi nal’ plant with k0c(k1, k2] its

assoc i ated k~ value of Al(3).

Let E= .01 k~, In A1(3), u~ largest of (to , to\~ Wd}. I~ = [O
~~

J ,
k2

sup ~ o (j to)t , of Al(2).  In Fig. 2 ,
It b~

t(s) = ___ 0 £ g p .  (Al)

sup It(ito) I
We want - ~ of A2(l). This is achieved inin f lt(jcu)I A(to)

+ 

sup~~o +  &
o]

if i~~~~~ 
~~ 

+ £0 
< of A2(l).

p

SinceI~ J< y~ i n  I~, i t  suffices for if k01>Ytand ~~~~~ 
~~~~~~~~

giving the sufficient condition -

I~ I (fly +0 t 
_ _ _ _ _ _  ~ k l , i n l .  (A2)(f l )  ot

It
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p
To satisfy A2(3) in I , it is necessary that It I ~~~~~~~~~~~~~ =t d l+gp

~p0
<Q(w), which is certainly achieved if

— + 9 .p 0

1L0 1 > sup lp0 l sup{p~ 
- ~ 

‘i__ ÷ _.L 
~PdIt 

+ 
inff p 

- 

~
1t ~dI~ 

b1 od

Therefore, choose

I9.0(ito)I> larger of 
~

1
~~~

t ’ ‘~od ‘~ox ’’ in (A3)

Next, we find a bound on in = [to
t
,co) to satisfy A2 ~~

From Al(3), ~~ 
= 

~~~~~ 
co), (~20~} lies in the narrow sliver V in

k
Fig. Al , ~ .01 

~~~~~ ~ .01 radians angular width , wi th magnitude bounds
2

I k k]1.99 -j
~ 

, 1.01 . Let A in Fig. Al be a trial value of 2. , so
1 2 1J 0
p0 p
— + 9.~ is the vector originati ng at point —p- in V and terminating

at A. Bounds on may be obtained so that

~~ + 9.
satisfies A2(i 2) and A2(3) in 1~= 1tot~ 

“
~~~p _2~ + ~p 0

It is easily seen that a very conservative boundary for 9. in

is the vertical line s = -a, with

= = ~~ 
(.99x

_ 1.01

)> 
0

i.e., tc on the right of the line s = -a, satisfies A2(1 , 2) in 1~. 

- -•~~~~~~~~~~~~~ .- - -  ~~~~~ •. •., + - ., • ~~~ .-  . - ~~~~
.

- --4
_ _ _  - ~~~~~~~~ —-———— — - -—-—- - --“-—- ---- ~~~~~~~.--— -----

--—— - ---
~~~~~~

-
~~~~~~~



~~~~~~~~~~ —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- --_--- - —--

32

In addition A2 (3) nust be satisfied in i.e., lt d I =

p P0 P0/p
1 + ~ 

~~~~~~ ~J 

or 

~~~~ 

~~~~

. This is easily satis-

fied if the above

k
a = a2 

= .99 
~~~~~

- 

~~~~~~~~~~~~~ 
(A4b )

2
2
~~i

Therefore, choose

a smaller of 
~°l’ 

a2) (A4c)

Thus, the problem is to find 2.~(s) such that I2.0(iw)I is outside the

circle C in Fig., Al for to~ to~ and to the right of the line s -a for

to > to
t
. It is obviously very easy to find such an L (s) which also

has all its poles and zeros in the interior of the left half-plane ,

wi th any desired finite excess of poles over zeros, and which further-

more has the property shown in Fig. Al , i.e., lies on the right of

s.~—a, for all to. For example , let

- ____________________
o e

(1 + i~) ii (1 +tot 1

29. tote any des i red f i n i t e  n umber , to1 = larger of (lOw t, 
OX 

~~
, to j~~1 

= l OOto1

Note that it woul d be Impossib le to guarantee the existence of the desired

if  p0 was nonminimum -phase (Horowitz and Sidi 1978).

• -- - ..‘+ ,,-..- -

+ -- .— -- -+ — -.- — -— . ---~~~~~
—+-. - - -_ - - - -~~~~~~~~~

— ..
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It is conceivable that even though A2 (l)-A2(3) are satisfied ,
P

A2(4) is not satisfied. Consider the zeros of 1 4- pg = 1 + 9. — or

of ~~ + 2.). Recall that in [0, w
t
),(

~
t} lies in the circle of radius

which is inside the circle C of Fig. Al , while lies outside the

larger circle C. In [wt~ 
t o ) ,  2.~ lies on the right of the line s~— a

while (~~
-} is contained in V of Fig. Al. Also , 2. (jw) lies on the

right of s = -a, V~. Hence , the vector + does not encircle the 
+

origin clockwise (or alternati vely does not so encircle ~~~ ~~~
and the system is stable.

Application to mio system

In the mio system (4a), the loop function 2.uu = ~~~~~ must handl e

the n ~~ problems v = 1 ,2,... ,n. The bounds on will be, in general ,

different for each v with its own 9.oxv ’ Ttv of (A3) and a~ 
of (A4c).

Let I~ = max ‘tv ’ tou = max 2.~~,, a1~ 
= mm a

~ 
be the design parameters

for ~~~ Obviously such a is satisfactory for all n trn,, problems.

In Sec 3 (just before 3.1), there was noted the desirability of

satisfying (6) on the boundary of a semicircle of radius toH in the right

half-plane. This requires , in addition to the previous , rewriting
+ 

Sec A3, replacing jto by wHe~
°, 0€ [0, ir/2). The development is easier if

toH is large enough so that each p1,~ k / s 1
~ on s = wHe . Clearly,

there will emerge bounds on 9.uuo on s = wHe~
° , which wi ll have to be

satisfied , in addition to those on s = jw . Obvi ously, such bounds can

always be satisfied by suitable shaping of , so that 1
~~WJO 1 ~S

large enough on toNe
3°

- -- - - .~~~~~~~~~ -- - --~~~~~~ - -- . - - --- + , +

• *~~• ; _ . .-.--
_--—~~~~~~~~~~~

.+— - - _
~~~~~~



A4. Design of f(s)

There remains the design of f(s), inasmuch as Z (s) = g(s) p0(s)

only determines g(s). Note that 2.0(s) only guarantees that

SUP
1’ Ip 0 < B(to) 

~ A2” l ’in~ IP A (w) ° ‘ ‘‘

P I—~~+9 .
IP 0

f(s) is chosen so that It ( iw ) I  € (A(to ), B(w )] .  For example, suppose

A(w ) = .9, B(w ) 1.04, and at to , ~~~~~~~~~~~~~~~ + 9. = 100, while inf1 1 1 ,~~~P o

~~~
+ 
~~ 

= 90 with f9.0(jw1 )I = 80. The range of It(ito1 )j 
=

fZ 
+

is therefore [.81f(jto1 )l, .8891f(jw1 )I), so we need
+ 2.p o

.81f(jw1 )I> .9, .8891f(jto
1
)I<1.04, giving the permissi ble range of

~~ , 

~~~ 
for If(iw1 )I. In this way, the bounds on ~f(jw)( are

found and it is always possible to find an f(s) with left hal f-plane

poles and zeros which satisfies such bounds .

The above procedure in all i ts detail s, is not recommended as a

practical design procedure. Simplifications were made to make the

proof easier, but the loop bandwidth is much larger than necessary.

Its primary purpose is as an existence theorem. A practical optimum

design procedure based on these ideas, but without the rigor, has

been given In (Horowitz and SIdi 1972) and used a great deal with

consi derabl e success.

+ 
- - •-~~~i~~-- . :
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A5. Extensions

(1) It is possible to have A(w) = B(w), Q(to) = 0 in A2(l), (3)

at a finite number of to values , by choosing g infini te at these points .

The sensitivity zeros can be single or mul tiple.

(2) Some or all pc Pcan have zerox on the jto axis. If these zeros

are precisely known (unl ikely), g(s) can be assigned poles there. Other-

wise, t(jw) must be zero at these points for such p, requiring obviously

much more careful statement of the tolerance on t(jto) and td (iw) near

such points.

(3) The most significant extension is that Constraint A1 (1) can

be relaxed. There can be uncertainty in the order of the plant due to

disappeari ng poles and zeros--closely related to the problem of s-ingu-

lar perturbations (Porter and Tsingas 1978).

A6. Disappearing Poles and Zeros

Let

m
= 

~~~ (l+sa. )
1 

= p1~(s) (A5)
~ (l+sb~)

with a c[O, a1~
], b~e[O~ b~~

]and p1
cP satisfying Al. The question of

concern is: “For what m, n values can the loop transmission be arbi-

trarily large over an arbitrarily large bandwidth but still be practical ,

i.e., go to zero as w ~ ~ with any desired finite excess of poles over

zeros?” For such m, n ~~~ tolerances satisfying A2 but otherwise ar-

bitrary, can be satisfied. 

_ . .~~~,
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In Fig. 2 and using (A5)

t(s) = 
fgp fgp1~ = (A6)l + g p  l + g p 1’i~ l + 2 .

The question posed can be answered by referring to the logarithmic

complex plane (Nichols chart) in Fig. A2. The intersections of the

zero db line wi th the vertical lines (2n+l ) 180°, n = o ± 1, . .
is the point -1.. Because of uncertainty , 2. = gp 1tY is not a point but

a set {t} denoted here as the template of 2., ~J~(w) which occupies
some region in the complex plane--Fig. A2. The shape of

that of (p 1 ‘f’} because there is no uncertainty in g. The latter

permits the translati on (but not rotation of t) in the complex

logarithmi c plane , hori zontally by arg g and vertically by ~~ in

db. For some finite to range, large 12. 1 is needed so lies above

the zero db line , e.g., J(w1) in Fig. A3 . At large enough 
~

must be very small (-~O asto-3-o’) so 3 must be well below the zero db
lines and continue downwards to - ~ In the transition of ~~from

above to below the zero db line , it must not interest -1 , nor en-

circle it. Hence, the width of~~ must be restricted to <360°

for some to interval in which ~~can squeeze in between two -1 points

on its way downward (Fig. AZ). But we want arbitrary sensitivity

reduction for arbitrary bandwidth. This requires ~ w.~, ~ for

to to the width of 3(w) < 360°.H .t

- .-. • . _- - -

-- _ -

~

-

~ 

~~~~~~~
- _ - - -  -

~~
+ _
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Consider now the shape of ~~which is that ofJ~1~, 
which is

that of~
l
~1 +~/ in the Nichols chart. Constraint A1(3) assures

that at large enough to the width of + zero degrees, so it

is entirely a question of the width of 

~ 
. Consider any factor

of ‘V , e.g., -

~ 

, b c [0, ml. At any specifi c to, the maximum

width of the template is tan~ tobmax 
= tan~ c~m. For ~jn = 20, the

template is OAB in Fig. A3 (O at b 0, B at wb = 20); for torn = 100

it is OABU and for torn = 1000, it is OABUV. For two such i ndependent

factors, i t  is easy to find the new template . This is done in Fig. A3

for = 

~~2 
= 20. Draw O”A”B” = OAB and position 0” at points on

OAB (because of the independent uncertainties). The result is

ABEJDEFO 
~~~~~~~~~~ ~~1+j b~~~’ 

b1
, b

2 CEO , ml . The template of a

zero factor (1+jwa) -is obtained by reflecting that of the pole if

(
~~
)max (tob) max ’ giving OA’B’ in Fig. 3.

As to inc reases, the contribution of each factor (pole or zero) -~~ 900

in width. Therefore, while theoretically four factors can be admi tted

between two -.1 points , stability margins dictate a maximum of three.

+ But this is only a necessary condition , because it must also be possible

to decrease I L l from arbitrary large to small values. This basically

means that over arbitrary large frequency range Arg I must be over—

whelmingly negative. The extreme right side of~~ must then lie on the

left of the 00 l ine in Fig. A2. One disappearing pole or zero poses no

problem , but two do because the left side of~~ wi ll then intersect -l 

~

- . - - --

~

_—
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as ~~(180
0 

wi de in the worst case) moves downward . (This argument must

be made rigorous , of course.) Note that this is for the most demanding

situation . If only stability is desired , then any finite number of

disappearing poles or zeros can be handled.

APPENDIX 2

A7. CONDITIONS THAT ~ MAPS 11(n2) 
INTO ITSELF

The constraints on Huv were given in 2.1. The first is satisfied

if (6) is. From Appendix 1 , it is seen that at finite to , the only

possible difficulty is , if in Fig. 2, d~~(iu~) is unbounded but 9uu~uve
-is bounded. If such unboundedness of d v is at a finite number of to

values , it is possible to assign poles there to ~~~ Since duv is a

function of the plant parameters (Eq. 4b), an infini te number of such

poles is conceivable , in fact is so in practice if there is one,

because of Inevitable uncertainties . How can 
~~ 

be unbounded while

1
~uve 

is bounded? From (3,5)

~ ( 1 ) ~ U 
~~~ 

t iv
d = , p  =

~~~~~~
— (A7)UV ~~ = ~ (—l )~~ Pj Ijl~j~ + 

~uu~uu 
uve

I ~u

Hence, such a situation is possibl e, if has such a pole which is

cancelled by a zero of and is not present in 
~~~~~ e.g. n = 2,

has a pole at ±ja, p12 has a zero there and p11 P22 does not have

a pole there. Such situations are therefore not allowed . It can be

argued that they are in practice impossible (Horowitz and Shaked 1975),
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because p12, p21 must involve different physical parameters and the

+ uncertainties in each cannot be 100% correlated. Irrespective of this

argument , the constraint is

IP~~(iw)I is uniformly bounded on [O,co) and~~, Vi~j (A8)

The problem is more diffi cult as to -
~~ and is treated in Section 3.

To satisfy constraint (2) on H~~ in 2.1 , consider separately

T’ (to) and (Tduvduv )’(w) of (4). The former can be written

= 1 ~~ \ ‘ = 
~~
‘ 

£ + ~~ Lt g ’p)
1+ 9. (1 + gp) 2

(Ag)

2 . = g p, 
~~~~uve ’ 

9 9 uu

of Fig. 2. Since f2./(1+L) is bounded by the appropriate Buv~ the

first term on the right of (A9) needs only uniform boundedness of f’ ,

which is easy as f is chosen by the designer. Obviously, the only

possible difficulties with the second term of (Ag ) are g ’ , p ’ which

can be infinite only at jto axis poles . However, at such poles , the

denominator forces the second term to be bounded . At large to where

gp, g’, p ’ -‘- 0, there is obviously no problem .

Next, consider (Tduvduv )I(w) written as

dp ‘ 
— 4~p d(p ’ — g ’p2)

~ ~(l +gp~ 
- l+~~~~ 11 +‘ (Alo)

g,p of (Ag), d = 

~~

+:_

~ 

~~~~~~~~~~~~~~~~ iii~~~~~~
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From (A8), d and since d is a rational function d’ , are uniformly

bounded on the jw axis. From the previous discussion re p ’, g ’ etc. and

Appendix 1, y ’ can be uniformly bounded on any finite to range by proper

choice of g. At large to each of d, d’ , p, p ’ etc -‘- 0.

It is easy to see. that constraint (3) is satisfied , because it has

been requi red that the elements of P, G, F all -‘- 0 as s -‘- ~~~.

+ • -  -.. -._ -_ ., ,_-. , - _ .- -•--_- + —_~~~~~~ --
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Fig . 1 Mul tiple input-output two matrix degree-of-freedom feedbackstructure c Tr, T = [t~~J. c = [c 1 .... C ] ’ , r = [r1 .. re]’.

~~~~~~~~~~~~~~~~~~~~~~~ 

__

Fig. 2 Single-loop structure equivalent , for synthesis of tuv ;

J~ 
p

~-it1~
, p~ ?=

~uv~uu~uve 
~uvetuv = 

~~~~~ 9uu1
~uve

I
It ~~

-

Fig. 3b To reach A in right half-plane , a zero must cross jw axisabove jwH.
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